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Abstract. Paper investigates the onset of nuclear magnetic ordering caused by the indirect Suhl-Nakamura
interaction in ferromagnets. The necessary condition for nuclear spin ordering with definite ordering vector
is obtained. Particularly, it is shown that ferromagnetically ordered phase of nuclear spins could be observed
only in case of disk shaped samples. The spectrum of the nuclear spin excitations is also found.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.30.Ds Spin waves

1 Introduction

In references [1,2] the ferromagnetically ordered phase of
nuclear spins in ferromagnets at ultralow spin tempera-
tures was predicted. Such ordering is caused by the nu-
clei’s indirect Suhl-Nakamura interaction [3,4] and takes
place in case of compensation of hyperfine field on nuclei
by the external static magnetic field. The nuclear ordering
occurred has the direction nonparallel to the magnetiza-
tion of electron spins. The nuclear spin-wave spectrum in
the ordered phase was calculated in references [2,5].

However, to the best of our knowledge, the above
theoretical predictions have not been confirmed exper-
imentally. In our opinion, this could be caused by the
following: in references [1,2,5] the periodical boundary
conditions were used neglecting demagnetization effects,
consequently the sample shape was not taken into account.

According to the result of the present article the de-
magnetization field plays a significant role in the forma-
tion of nuclear ordering. As it will be shown the nuclear
ferromagnetically ordered phase could be observed only
in disk shaped samples with applied static magnetic field
perpendicular to the disk plane. The modified dispersion
relation for nuclear spin excitations will be also obtained.

It should be also mentioned that using the dynamical
polarization and adiabatical demagnetization methods [6]
the required ultralow nuclear spin temperatures can be
reached easily.

2 Origin expressions

Let us consider the electron-nuclear spin system in uni-
axial ferromagnet. We choose x direction parallel to the
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axis of magnetic anisotropy and examine the case when
a static magnetic field H0 is applied along z axis. In this
case the Hamiltonian has the following form:

H = gH0

N∑
f

Szf − γH0

N∑
f

Izf −K
N∑
f

(
Sxf
)2

+
1
2

N∑
fg

Jfg (SfSg) +A
N∑
f

(SfIf ) +Hdd, (1)

where (−g) and γ are gyromagnetic ratios for electrons
and nuclei, respectively; N is a number of sites in a sam-
ple; Sf and If are electron and nuclear spin operators
disposed in the lattice site f , respectively; Jfg is the ex-
change interaction constant (for ferromagnet Jfg < 0);
K is a constant of magnetic anisotropy (K > 0); A is a
constant of hyperfine interaction (A < 0) and we work
in the unit system h̄ = kB = 1. The last term in (1)
describes the dipole-dipole interaction between electron
spins (i.e. demagnetization forces) which was neglected in
references [1,2,5]. This term has a well known form [7]:

Hdd =
N∑
f,g

g2

2r3
fg
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)
− 3

(
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)(
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)
r2
fg

}
,

where rfg ≡ |rfg|; rfg = rf − rg; rf and rg are the radius
vectors of sites f and g, respectively.

As ultralow spin temperatures are considered the spin-
wave approximation is used for electron spin excitations:

S±f =
√

2Sa±f , Szf = −S + a+
f a
−
f ,

where S±f = Sxf ± iSyf ; S and I are electron and nu-
clear spins, respectively. Further, using the momentum
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a±p =
N∑
f

1
N
a±f e±iprf , Jp =

N∑
g

Jfgeiprfg

and diagonalizing the electronic part of Hamiltonian (1)
the following can be obtained:

H =
∑
p

Ωpb
+
p bp − γδH
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where b+p and bp are the diagonalized operators of magnon
creation and annihilation, respectively; I±f = Ixf ± iIyf ;
δH = H0 + (AS/γ) is a total static magnetic field on
nuclei; µp and νp are diagonalizing constants [8]:

µp =

√
Ep +Ωp −KS

2Ωp
,

νp =
Cp −KS√

2Ωp(Ep +Ωp −KS)
·

Here Ωp expresses the dispersion relation for electron
spin excitations [5,8] (it should be noted that we restrict
ourselves to the consideration of long wavelength limit
|p|a� 1, a is a lattice parameter):

Ωp =
√
E2

p − |Cp|2 − ωA(Ep −ReCp);

Ep = ωH − ωexa
2|p|2 − (D0 +Dp/2)

and [9,10]

Cp 6=0 =
ωM

2
sin2ϑpe−2iϕp , C0 = 0,

Dp 6=0 = ωM

(
cos2ϑp − 1/3

)
, D0 = ωMξ/3.

In above formulae the following definitions are made: ωH =
gH0; ωM = 4πg2S/a3; ωex = SJ0/6 is the characteristic
frequency of exchange interaction in case of simple cubic
lattice; ωA = 2KS is the anisotropic frequency; ϑp and ϕp

are orbital and polar angles of p, respectively; parameter
ξ depends upon the sample shape and varies between the
boundaries: −1 ≤ ξ ≤ 2 (e.g. for spherical samples ξ = 0,
for disk samples with applied magnetic field perpendicular
to the disk plane ξ = 2).

3 Ordered phase of nuclear spins

In order to obtain the Hamiltonian describing indirect in-
teraction between nuclear spins let us average (2) over
the fast oscillations of electron spins (for the details con-
cerning this procedure see Ref. [11]). Thereby we get the

Hamiltonian with modified (via including demagnetiza-
tion effects) Suhl-Nakamura interaction:

Heff
n = −γδHIz0 −

1
2N

∑
p

I−pV̂pIp, (3)

where the following momentum presentation is used for
nuclear spins:

Ip =
N∑
f

Ifeiprf

and

V̂p =

 V xxp V xyp 0

V yxp V yyp 0

0 0 0

 .

Here the tensor’s components are presented by the
formulae:

V xxp = A2S
Ep −ReCp

Ω2
p

,

V yyp = A2S
Ep + ReCp − ωA

Ω2
p

,

V xyp = V yxp = A2S
ImCp

Ω2
p

·

The theory of the onset of magnetic ordering is discussed
in detail in recent review article reference [6]. Particularly,
it is well known that magnetic order takes place over or-
dering vector k for which the eigenvalue of V̂k reaches
maximum value. In our case the maximum eigenvalue for
k 6= 0 can be presented in the form:

λmax(k 6= 0) =
A2S

ωH − ωA − ωM(ξ + 1)/3
, (4)

while the maximum eigenvalue of V̂k for k = 0 has a form

λmax(k = 0) =
A2S

ωH − ωA − ωMξ/2
· (5)

Besides, the value (4) is reached in case of |k| → 0 and
sinϑk = 0.

The ferromagnetic ordering of nuclear spins (caused by
indirect Suhl-Nakamura interaction) takes place only if

λmax(k = 0) ≥ λmax(k 6= 0). (6)

Otherwise, no permanent nuclear spin structure (caused
by Suhl-Nakamura interaction) with definite ordering vec-
tor exists. Indeed, in the last case, as it is mentioned above,
the ordered state is characterized by the ordering vector
|k| → 0. But in this case our whole consideration is not
valid, because in a such wavelength range only the inho-
mogeneous Walker modes [12] are excited. These modes
can not be specified by the definite wave vector. Conse-
quently if inequality (6) does not hold the complex ordered
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phases of nuclear spins depending upon the sample shape
are realized, but no ordered nuclear spin structure charac-
terized by a definite ordering vector exists. On the other
hand, if inequality (6) holds the ordering vector is equal to
zero and thus the ferromagnetic ordering of nuclear spins
could be taken place.

Inequality (6) is satisfied for ξ ≥ 2, i.e. only for disk
shaped samples, when the external magnetic field is ap-
plied normally to the disk plane (let us remind that ξ
varies between the boundaries −1 ≤ ξ ≤ 2).

Using the general results of [6] one can conclude that
the expression for the critical value of the effective mag-
netic field at zero temperature has the form:

γδHc =
A2SI

ωH − ωM − ωA
, (7)

while the transition temperature at zero effective magnetic
field (δH = 0) is expressed by the equality:

Tc =
A2SI(I + 1)/3
ωH − ωM − ωA

· (8)

Expressions (7, 8) are slightly modified in comparison with
the respective ones obtained in references [1,2] and thus,
their numerical values are almost the same.

In case of |δH| < δHc and below the ordering tem-
perature the ferromagnetic ordering of nuclear spins takes
place along the vector n. It lies in xz plane and

cosΨ =
γδH

〈I〉V xx0

,

where Ψ is an angle between n and z axis; 〈I〉 is a static
averaged value of nuclear polarization.

Let us choose the new frame of references where the
direction of averaged nuclear spin coincide with the z′ axis:

(Ixp)′ = IxpcosΨ − IzpsinΨ,

(Iyp)′ = Iyp,

(Izp)′ = IzpcosΨ + IxpsinΨ.

Then diagonalizing (3) in analogy with reference [5] the
following dispersion relation can be obtained for linear
spin excitations in the nuclear ordered phase:

Ωnp = I
{

(V xx0 − V yyp )(V xx0 − V xxp cos2Ψ)

− (V xyp )2cos2Ψ
}1/2

. (9)

This spectrum is characterized by the following gap and
upper limit:

Ωn0 = I|sinΨ |
√
V xx0 (V xx0 − V yy0 ),

Ωn∞ = IV xx0 .

Let us consider a weakly anisotropic ferromagnet (ωA �
ωM � ωH) when the full compensation of hyperfine field

on nuclei occurs, i.e. γH0 = |A|S, thus cosΨ = 0. Exam-
ining the long wavelength excitations ωexa

2|p|2 � ωH the
following expression can be obtained from (9):

Ωnp =
Iγ2

Sg2

√
ωH

(
ωA + ωexa2|p|2 + ωMsin2ϑsin2ϕ

)
. (10)

In order to compare our results with reference [1] let
us consider ferromagnet (151)EuO which is character-
ized by the following constants: S = 7/2, I = 5/2,
ωH = g|A|S/γ = 2.4 × 1012 s−1, ωA = 0, ωex = 7.3 ×
1012 s−1, ωM = 1.1 × 1011 s−1, a = 5.2 × 10−8 sm,
g = 1.8 × 107 (s/Oe)−1, γ = 6.6 × 103 (s/Oe)−1. Then
one can get from (8) the value for ordering temperature
Tc = 2.2×10−6 K, which is almost the same as in reference
[1]. We also can obtain from (10) the dispersion relation:

Ωnp ' T1

√
a2|p|2 + T2sin2ϑsin2ϕ,

where T1 = 4.3 × 105 s−1 and T2 = 1.5 × 10−2. Finally
we conclude that demagnetization effects (which are man-
ifested in appearance of the angular dependence) are sig-
nificant in whole wavelength range a|p| � 1 where the
continual approach is valid.

4 Conclusions

The main result of the present article is the following:
the nuclear ferromagnetically ordered phase caused by the
Suhl-Nakamura interaction could be observed only in disk
shaped samples where applied external magnetic field is
directed perpendicularly to the disk plane. For the pur-
pose of the present article the anisotropic axis is consid-
ered to be perpendicular to the direction of external field.
However, as it can be easily shown, the main result re-
mains the same for any orientation of the axis of magnetic
anisotropy.
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